Kleene realizability and negative translations

Alexandre Miquel

July 19th, 20th, 2016 - Piriápolis

Plan

Meene realizability

2 Gödel-Gentzen negative translation

3 Lafont-Reus-Streicher negative translation

Plan

Meene realizability

Q Gödel-Gentzen negative translation

3 Lafont-Reus-Streicher negative translation

The language of realizers (recall)

Terms of PCF

 $(= \lambda$ -calculus + primitive pairs & integers)

Syntactic worship: Free & bound variables. Renaming. Work up to α -conversion. Set of free variables: FV(t). Capture-avoiding substitution: $t\{x:=u\}$

• Notations: $\langle t_1, t_2 \rangle := \operatorname{pair} t_1 t_2, \quad \bar{n} := \mathbb{S}^n \, \mathbb{O} \quad (n \in \mathbb{N})$

Reduction rules

• Grand reduction written $t \succ^* u$ (reflexive, transitive, context-closed)

Definition of the relation $t \Vdash A$ (recall)

• **Recall:** For each closed FO-term e, we write $e^{\mathbb{N}}$ its denotation in \mathbb{N}

```
Definition of the realizability relation t \Vdash A (t, A \text{ closed})
t \Vdash e_1 = e_2 \equiv e_1^{\mathbb{N}} = e_2^{\mathbb{N}} \land t \succ^* 0
t \Vdash \bot \equiv \bot
t \Vdash \top \equiv t \succ^* 0
t \Vdash A \Rightarrow B \equiv \forall u \ (u \Vdash A \Rightarrow tu \Vdash B)
t \vdash A \land B \equiv \exists t_1 \exists t_2 \ (t \succ^* \langle t_1, t_2 \rangle \land t_1 \vdash A \land t_2 \vdash B)
t \vdash A \lor B \equiv \exists u \ ((t \succ^* \langle \overline{0}, u \rangle \land u \vdash A) \lor (t \succ^* \langle \overline{1}, u \rangle \land u \vdash B))
t \vdash \forall x \ A(x) \equiv \forall n \ (t \ \overline{n} \vdash A(n))
t \vdash \exists x \ A(x) \equiv \exists n \ \exists u \ (t \succ^* \langle \overline{n}, u \rangle \land u \vdash A(n))
```

Lemma (closure under anti-evaluation)

If $t \succ^* t'$ and $t' \Vdash A$, then $t \Vdash A$

The main Theorem (recall)

Lemma (Adequacy)

Let $d:(A_1,\ldots,A_n\vdash B)$ be a derivation in NJ. Then:

- for all valuations ρ ,
- for all realizers $t_1 \Vdash A_1[\rho], \ldots, t_n \Vdash A_n[\rho]$,

we have: $d^*[
ho]\{z_1:=t_1,\ldots,z_n:=t_n\} \Vdash B[
ho]$

Lemma

All axioms of HA are realized

Theorem (Soundness)

If $HA \vdash A$, then $t \Vdash A$ for some closed PCF-term t

The class of Harrop formulas

- Intuition: Harrop formulas do not contain the two "problematic" constructions ∨ and ∃, except on the left-hand side of implications
- Therefore, Harrop formulas are classical:

Proposition

For each Harrop formula $H(\vec{x})$:

$$HA \vdash \forall \vec{x} (H(\vec{x}) \Leftrightarrow \neg \neg H(\vec{x}))$$

Proof. By structural induction on $H(\vec{x})$.

• To each (possibly open) Harrop formula H, we associate a closed PCF-term t_H that is computationally trivial:

$$\begin{array}{rclcrcl} \tau_{H} & := & 0 & (\textit{H} \; \text{atomic}) & \tau_{A \Rightarrow H} & = & \lambda_{-}.\,\tau_{H} \\ \tau_{H_{1} \wedge H_{2}} & = & \langle \tau_{H_{1}}, \tau_{H_{2}} \rangle & \tau_{\forall x \; H} & = & \lambda_{-}.\,\tau_{H} \end{array}$$

Theorem

For all closed Harrop formulas H:

If *H* is realized, then
$$\tau_H \Vdash H$$

Moreover, all realizers of H are "computationally equivalent" to au_H

- Intuition: Harrop formulas have computationally irrelevant realizers, that can be replaced by the trivial realizers τ_H
 - Useful for optimizing extracted programs (e.g. Fermat's last theorem)
 - But shows that Harrop formulas are computationally irrelevant

Plan

Meene realizability

2 Gödel-Gentzen negative translation

3 Lafont-Reus-Streicher negative translation

How to cope with classical logic?

Kleene realizability is definitely incompatible with classical logic:

(The same holds for all variants of Kleene realizability)

- Two possible solutions:
 - Compose Kleene realizability with a negative translation from classical logic (LK) to intuitionistic logic (LJ) (next slide)
 - Reformulate the principles of realizability to make them compatible with classical logic: Krivine classical realizability (next talk)

The Gödel-Gentzen negative translation

- **Idea:** Turn positive constructions (atomic formulas, \vee , \exists) into negative constructions (\bot , \neg , \Rightarrow , \wedge , \forall) using De Morgan laws
- Every formula A is translated into a formula A^G defined by:

writing: $\neg A := A \Rightarrow \bot$

Theorem (Soundness)

- \bullet LK \vdash $A^G \Leftrightarrow A$
- ② If PA \vdash A, then HA \vdash A^G

Realizing translated formulas

- Strategy:

 - ② Turn it into a derivation d^G of A^G (in HA)
 - Turn d^G into a Kleene realizer (program extraction)
- Does not work! Failure comes from:

Proposition (Realizability collapse)

For every closed formula A:

- 2 Kleene's semantics for A^G mimics Tarski's semantics for A:

 A^G is realized iff $\tau_{A^G} \Vdash A^G$ iff $\mathbb{N} \models A$

Proof. By structural induction on A.

• Conclusion: Kleene ∘ Gödel-Gentzen = Tarski

Friedman's R-translation

(called A-translation by Friedman)

- Principle: In Gödel-Gentzen translation, replace each occurrence of ⊥ (absurdity) by a fixed formula R, called the return formula
- Every formula A is translated into a formula A^F defined by:

Theorem (Soundness)

If PA \vdash A, then HA \vdash A^F (independently from the formula R)

Beware! The formulas A and A^F are no more classically equivalent (in general)

Theorem (Kreisel-Friedman)

PA conservatively extends HA over Π_2^0 -formulas:

If PA
$$\vdash \forall x \exists y f(x, y) = 0$$
, then HA $\vdash \forall x \exists y f(x, y) = 0$

Proof. Assume that PA $\vdash \forall x \exists y \ f(x, y) = 0$. We have:

$$\begin{array}{lll} \mathsf{HA} \; \vdash \; \forall x \neg_R \forall y \neg_R \neg_R \neg_R f(x,y) = 0 & \text{(by R-translation)} \\ \mathsf{HA} \; \vdash \; \forall x \neg_R \forall y \neg_R f(x,y) = 0 & \text{(since } \; \neg_R \neg_R \neg_R \Leftrightarrow \; \neg_R) \\ \mathsf{HA} \; \vdash \; \neg_R \forall y \neg_R f(x_0,y) = 0 & \text{(\forall-elim, x_0 fresh)} \\ \mathsf{HA} \; \vdash \; \forall y \left(f(x_0,y) = 0 \Rightarrow R \right) \; \Rightarrow \; R & \text{(def. of } \neg_R) \end{array}$$

We now let: $R := \exists y_0 f(x_0, y_0) = 0$ (Friedman's trick!) From the def. of R:

$$\mathsf{HA} \; \vdash \; \forall y \, (f(x_0, y) = 0 \Rightarrow \exists y_0 \, f(x_0, y_0) = 0) \; \Rightarrow \; \exists y_0 \, f(x_0, y_0) = 0$$

But the premise of the above implication is provable

$$\mathsf{HA} \; \vdash \; \forall y \, (f(x_0, y) = 0 \Rightarrow \exists y_0 \, f(x_0, y_0) = 0) \tag{\exists-intro}$$

hence we get

$$\begin{array}{ll} \mathsf{HA} \; \vdash \; \exists y_0 \, f(x_0,y_0) = 0 & \text{(modus ponens)} \\ \mathsf{HA} \; \vdash \; \forall x_0 \, \exists y_0 \, f(x_0,y_0) = 0 & \text{(\forall-intro)} \end{array}$$

Realizing translated formulas, again

Strategy:

- Build a derivation d of a Π_2^0 -formula A (in PA)
- ② Turn it into a derivation F-trick (d^F) of A (in HA)
- **1** Turn F-trick(d^F) into a Kleene realizer of A (program extraction)
- This technique perfectly works in practice. However:
 - The formula A^F is not a Harrop formula (in general), even when A is. Possible fix: Introduce specific optimization techniques, e.g.:

Refined Program Extraction

[Berger et al. 2001]

• The translation $A \mapsto A^F$ completely changes the structure of the underlying proof. **Possible fix:** cf next part

Plan

Meene realizability

@ Gödel-Gentzen negative translation

3 Lafont-Reus-Streicher negative translation

The Lafont-Reus-Streicher negative translation

 Idea: Translate each formula A into the (relative) negation of a formula A[⊥] already representing the negation of A:

$$A^{LRS} := \neg_R A^{\perp} \equiv A^{\perp} \Rightarrow R$$
 (A^{\perp} defined by induction on A)

(Again, this translation is parameterized by a return formula R)

- To every predicate symbol p (source language) we associate a predicate symbol \bar{p} representing its negation (target language)
- Definition of the translations $A \mapsto A^{\perp}$ and $A \mapsto A^{LRS}$:

$$(p(e_1, \dots, e_k))^{\perp} := \bar{p}(e_1, \dots, e_k) \qquad \qquad \perp^{\perp} := \top$$
$$(A \Rightarrow B)^{\perp} := A^{LRS} \wedge B^{\perp} \qquad (\forall x A)^{\perp} := \exists x A^{\perp}$$
$$A^{LRS} := \neg_R A^{\perp} \equiv A^{\perp} \Rightarrow R$$

Theorem (Soundness)

- **1** When $R \equiv \bot$: LK \vdash $A^{\bot} \Leftrightarrow \neg A$ and LK \vdash $A^{LRS} \Leftrightarrow A$
- ② If LK \vdash A, then LJ \vdash A^{LRS} (independently from the formula R)

Computational interpretation

• **Intuition:** The translated formula A^{\perp} represents the type of stacks opposing (classical) terms of type A:

$$(A_1 \Rightarrow \cdots \Rightarrow A_n \Rightarrow B)^{\perp} \equiv A_1^{LRS} \wedge \cdots \wedge A_n^{LRS} \wedge B^{\perp}$$
$$(A_1 \to \cdots \to A_n \to B)^{\perp} \equiv A_1^{LRS} \times \cdots \times A_n^{LRS} \times B^{\perp}$$

- To analyze the computational contents of the LRS-translation, we need to work across to λ-calculi:
 - A source calculus to represent classical proofs:

$$\lambda_{\text{source}} = \lambda_{\rightarrow} + \alpha : ((A \rightarrow B) \rightarrow A) \rightarrow A$$
 (Peirce's law)

(Polymorphic constant & introduces classical reasoning)

• An intuitionistic target calculus to represent translated proofs:

$$\lambda_{\text{target}} = \lambda_{\rightarrow,\times}$$

(In this calculus, pairs are used to represent stacks)

The source λ -calculus

 $(\{\bot, \Rightarrow, \forall\}$ -fragment of LK)

Syntax

Types
$$A, B ::= \bot \mid p(e_1, ..., e_k) \mid A \Rightarrow B \mid \forall x A$$

Proof-terms $t, u ::= z \mid \lambda z . t \mid tu \mid \mathbf{c}$

- Classical logic obtained by introducing an inert constant c (call/cc) for Peirce's law (taken as an axiom)
- Constructions \top , \wedge , \vee , \exists encoded using De Morgan laws (= full LK)

Typing rules

$$\overline{\Gamma \vdash z : A} \stackrel{(z:A) \in \Gamma}{} \overline{\Gamma \vdash \mathbf{c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

$$\frac{\Gamma, z : A \vdash t : B}{\Gamma \vdash \lambda z . t : A \Rightarrow B} \qquad \overline{\Gamma \vdash t : A \Rightarrow B} \qquad \overline{\Gamma \vdash u : A}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x A} \xrightarrow{x \notin FV(\Gamma)} \qquad \frac{\Gamma \vdash t : \forall x A}{\Gamma \vdash t : A\{x := e\}} \qquad \overline{\Gamma \vdash t : A}$$

Note: \forall is treated uniformly: $\forall x A(x) \approx \bigcap_{x} A(x)$ (no function argument!)

The target λ -calculus

 $(\{\top, \Rightarrow, \land, \exists\}$ -fragment of LJ)

Syntax

Types
$$A, B ::= \top \mid \bar{p}(e_1, \dots, e_k) \mid A \Rightarrow B \mid A \land B \mid \exists x A$$

Proof-terms $t, u ::= z \mid \lambda z . t \mid tu \mid \langle t, u \rangle \mid fst(t) \mid snd(t)$

+ usual reduction rules for proof-terms

Typing rules

$$\frac{\Gamma, z : A \vdash t : B}{\Gamma \vdash \lambda z . t : A \Rightarrow B} \qquad \frac{\Gamma \vdash t : A \Rightarrow B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash \langle t, u \rangle : A \land B} \qquad \frac{\Gamma \vdash t : A \land B}{\Gamma \vdash fst(t) : A} \qquad \frac{\Gamma \vdash t : A \land B}{\Gamma \vdash snd(t) : B}$$

$$\frac{\Gamma \vdash t : A\{x := e\}}{\Gamma \vdash t : \exists x A} \qquad \frac{\Gamma \vdash t : (\exists x A) \Rightarrow B}{\Gamma \vdash t : \forall x (A \Rightarrow B)} \xrightarrow{x \notin FV(B)}$$

Note: \exists treated uniformly: $\exists x \, A(x) \approx \bigcup_x A(x)$ (no witness!)

Remark: Uniform vs non-uniform quantifiers

 In the Curry-Howard correspondence (and in realizability), there are two different ways to interpret quantifiers:

Quantifier	Uniform (ML/Haskell style)	Non-uniform (Type Theory style)
$\forall x A(x)$	$\bigcap_{x \in D} A(x)$ (intersection type)	$\prod_{x \in D} A(x)$ (type of dependent functions)
$\exists x A(x)$	$\bigcup_{x \in D} A(x)$ (union type)	$\sum_{x \in D} A(x)$ (type of dependent pairs)

• **Remark:** Tarski/Kripke/Heyting/Cohen models do not distinguish the two interpretations: difference only appears in realizability

Remark: Uniform vs non-uniform quantifiers

(2/2)

- 1st-, 2nd- and higher-order logic support both interpretations (But uniform interpretation is more concise & natural)
- The same holds for impredicative set theories: ZF, IZF_C, IZF_R
- Arithmetic (PA/HA) only supports the non-uniform interpretation (due to the induction principle)
- But in all cases, the non-uniform interpretation can be encoded from the uniform interpretation, using a relativization:

$$(\text{non-uniform}) \ \forall x \ A(x) \ := \ (\text{uniform}) \ \forall x \ \underbrace{(x \in D \Rightarrow A(x))}_{\text{type of functions}}$$

$$(\text{non-uniform}) \ \exists x \ A(x) \ := \ (\text{uniform}) \ \exists x \ \underbrace{(x \in D \land A(x))}_{\text{type of pairs}}$$

• This is why we shall prefer the uniform interpretation (in what follows)

The Lafont-Reus-Streicher logical translation

• The logical translation $A \mapsto A^{LRS}$

$$(p(e_1,\ldots,e_k))^{\perp} := \bar{p}(e_1,\ldots,e_k) \qquad \perp^{\perp} := \top$$
$$(A \Rightarrow B)^{\perp} := A^{LRS} \wedge B^{\perp} \qquad (\forall x A)^{\perp} := \exists x A^{\perp}$$
$$A^{LRS} := \neg_R A^{\perp}$$

corresponds to a program transformation on untyped proof terms, called a continuation-passing style (CPS) translation:

Note: $\lambda \langle z, s \rangle$. t defined as $\lambda z_0 . (\lambda z s . t) (fst(z_0)) (snd(z_0))$

Theorem (Soundness)

If $\Gamma \vdash t : A$ (in the source λ -calculus) then $\Gamma^{LRS} \vdash t^{LRS} : A^{LRS}$ (in the target λ -calculus)

Towards the Krivine abstract machine

ullet From the computational behavior of translated proof terms t^{LRS} ...

... we deduce evaluation rules for classical proof terms:

Krivine Abstract Machine (KAM)

 Reformulating Kleene realizability through the LRS translation (and its CPS), we get Krivine classical realizability (cf next talk)