Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 000000000

Kleene realizability and negative translations J

Alexandre Miquel

<]
>
a
=
=
>
=)
=
=

Hi-8 40 >
UNIVERSIDAD INGENIERIA [v®
DE LA REPUBLICA

URUGUAY

July 19th, 20th, 2016 — Piridpolis

© Kleene realizability

© Godel-Gentzen negative translation

© Lafont-Reus-Streicher negative translation

© Kleene realizability

© Godel-Gentzen negative translation

© Lafont-Reus-Streicher negative translation

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
080000 0000000 000000000

The language of realizers (recall)

Terms of PCF (= A-calculus + primitive pairs & integers)

Syntactic worship: Free & bound variables. Renaming. Work up to a-conversion.
Set of free variables: FV/(t). Capture-avoiding substitution: t{x := u}

o Notations: (t1,tp) = pairty tp, n:= 8"0 (neN)

Reduction rules

Hu = t{x:=u}

fst (t1,t) = b rec tp 10 = tp
snd (t1,) > b rec ty t; (Su) > t1 u (rec ty ty u)

o Grand reduction written t >=* u (reflexive, transitive, context-closed)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
00@000 0000000 000000000

Definition of the relation t I A (recall)

@ Recall: For each closed FO-term e, we write eV its denotation in IN

Definition of the realizability relation t I- A (t, A closed)
thFer=e0 = eN=e A t>*0
tiFL = 1
tiET = t>"0
tFA=B = Vu(ulFA = tul-B)
tFAAB = 3t 3k (t =" (ti,) A blFA A & IFB)
tFAVB = Ju((t=*0,u) A ul-A) Vv (t=*(1,u) A ulFB))
tIFVxA(x) = Vn(tnl- A(n))
tlF3xA(x) = 3n3u(t>" (A,u) A ulkA(n))

Lemma (closure under anti-evaluation)

If t>*t and t'IFA, then tIFA

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000e00 0000000 000000000

The main Theorem (recall)

Lemma (Adequacy)

Let d:(Ai1,...,A,F B) be a derivation in NJ. Then:
o for all valuations p,

o for all realizers t; I- Ai[p], . .., tn IF Anlp],
we have: d* [p{zr :=t1,...,z0 =t} IF B[p]

All axioms of HA are realized ‘

Theorem (Soundness)
If HAF A, then tIFA for some closed PCF-term t

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000080 0000000 000000000

Harrop formulas (1/2)

The class of Harrop formulas

Harrop formulas H = e=e | T | L
| HHAH, | A=H | VxH

@ Intuition: Harrop formulas do not contain the two “problematic”
constructions V and 3, except on the left-hand side of implications

@ Therefore, Harrop formulas are classical:

Proposition

For each Harrop formula H(X):

Proof. By structural induction on H(X). J

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
00000e 0000000 000000000

Harrop formulas (2/2)

@ To each (possibly open) Harrop formula H, we associate a closed
PCF-term ty that is computationally trivial:
TH = 0 (H atomic) TAsH = A_.TH
THinH, = (THy, THy) TyxH = A_.TH

For all closed Harrop formulas H:

If H is realized, then 74lIFH

Moreover, all realizers of H are “computationally equivalent” to 7y

@ Intuition: Harrop formulas have computationally irrelevant
realizers, that can be replaced by the trivial realizers 7y

o Useful for optimizing extracted programs (e.g. Fermat's last theorem)

o But shows that Harrop formulas are computationally irrelevant

© Kleene realizability

© Godel-Gentzen negative translation

© Lafont-Reus-Streicher negative translation

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0@00000 000000000

How to cope with classical logic?

@ Kleene realizability is definitely incompatible with classical logic:

I ¥x (Halt(x) Vv —Halt(x))
any_term |- =Vx (Halt(x) vV —Halt(x))

(The same holds for all variants of Kleene realizability)

@ Two possible solutions:

@ Compose Kleene realizability with a negative translation from
classical logic (LK) to intuitionistic logic (LJ) (next slide)

© Reformulate the principles of realizability to make them compatible
with classical logic: Krivine classical realizability (next talk)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 000000 000000000

The Godel-Gentzen negative translation

o ldea: Turn positive constructions (atomic formulas, Vv, 3) into
negative constructions (L, -, =, A, V) using De Morgan laws

@ Every formula A is translated into a formula A® defined by:

TC =T 16 =1
(A= B)® = A® = B° (1 = &)¢ = —(e; = &)
(AANB)¢ = A® A B¢ (AV B)¢ = —(-A® A-B°)
(VxA)¢ = VYxAC (IxA)C = -VYx-AC
writing: —A = A= L

Theorem (Soundness)

QLK ACSA
Q@ If PAF A then HA I A€

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 000@000 000000000

Realizing translated formulas

o Strategy:
© Build a derivation d of A (in PA)
@ Turn it into a derivation d® of A® (in HA)
@ Turn d€ into a Kleene realizer (program extraction)

@ Does not work! Failure comes from:

Proposition (Realizability collapse)

For every closed formula A:
@ AC is a Harrop formula (computationally irrelevant)

@ Kleene's semantics for A° mimics Tarski's semantics for A:

AC is realized iff T, IFAC iff INEA

Proof. By structural induction on A.)

@ Conclusion: Kleene o Godel-Gentzen = Tarski

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000e00 000000000

Friedman’'s R-translation (called A-translation by Friedman)

@ Principle: In Godel-Gentzen translation, replace each occurrence
of L (absurdity) by a fixed formula R, called the return formula

o Every formula A is translated into a formula A defined by:

T5 = T 1fF =R
(A = B)F = AF = BF (61 = ez)F = —|R—|R(e1 = 62)
(AN B)F = AF A BF (A\/B)F = ﬁR(ﬂRAF/\—\RBF)
(Vx A)F = vxAF (Ax AF = —gvVx-gAF
writing: —-grA = A= R

Theorem (Soundness)

If PA F A, then HA - AF (independently from the formula R)

Beware! The formulas A and AF are no more classically equivalent (in general)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 00000e0 000000000

Friedman's trick

Theorem (Kreisel-Friedman)

PA conservatively extends HA over M3-formulas:

If PA F Vx3yf(x,y)=0, then HA F Vx3yf(x,y)=0

Proof. Assume that PA F Vx3yf(x,y)=0. We have:

HA + VXﬁRVyﬁRﬁRﬁRf(X,y) =0 (by R—translation)

HA F Vx—gVy-grf(x,y) =0 (since —g—gR & —R)
HA + —grVy—-grf(x0,y) =0 (V-elim, xo fresh)

HA + Vy(f(x,y)=0=R) = R (def. of —g)

We now let: R := 3Jyp f(x0,y0) =0 (Friedman’s trick!) From the def. of R:
HA = Vy (f(x0,y) = 0= 3y f(x0,50) =0) = Ty f(x0,%) =0

But the premise of the above implication is provable
HA + Vy (f(x0,y) = 0= 3yo f(x0, %) = 0) (F-intro)

hence we get

HA = 3yo f(x0,¥0) =0 (modus ponens)
HA = Vxo 3yo f(x0,¥0) =0 (V-intro) O

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 000000e 000000000

Realizing translated formulas, again

o Strategy:
@ Build a derivation d of a M3-formula A (in PA)
@ Turn it into a derivation F-trick(d”) of A (in HA)

@ Turn F-trick(d") into a Kleene realizer of A (program extraction)

@ This technique perfectly works in practice. However:

o The formula AF is not a Harrop formula (in general), even when A is.
Possible fix: Introduce specific optimization techniques, e.g.:

Refined Program Extraction [Berger et al. 2001]

o The translation A — AF completely changes the structure of the
underlying proof. Possible fix: cf next part

0 Kleene realizability

© Godel-Gentzen negative translation

© Lafont-Reus-Streicher negative translation

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 0@0000000

The Lafont-Reus-Streicher negative translation

o ldea: Translate each formula A into the (relative) negation of a
formula A+ already representing the negation of A:

ALRS . — -RAL = AL =R (AL defined by induction on A)

(Again, this translation is parameterized by a return formula R)

@ To every predicate symbol p (source language) we associate a
predicate symbol p representing its negation (target language)

o Definition of the translations A+~ AL and A — ALRS:

(p(er, ..., ea))t = pler,...,ex) It =T
(A= B)t = ARS A B (VxA)t = IxAt
ARS = At = AN =R

Theorem (Soundness)

Q@ WhenR=1: LK - A" < -A and LK - A = A
@ If LK - A then LJF AR (independently from the formula R)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 00@000000

Computational interpretation

o Intuition: The translated formula AL represents the type of stacks
opposing (classical) terms of type A:

(A= - = A, =Bt = ARS A AALRS A BL

(A = = A, — Bt = AIRS x ... x ALRS Bt

@ To analyze the computational contents of the LRS-translation, we
need to work across to A-calculi:

o A source calculus to represent classical proofs:
dsource = A +a@:((A=>B)—=A) = A (Peirce’s law)

(Polymorphic constant « introduces classical reasoning)

o An intuitionistic target calculus to represent translated proofs:
>\target =)\—>,><

(In this calculus, pairs are used to represent stacks)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 000e00000

The source \-calculus ({L,=,V}-fragment of LK)

Types AB == L | ple,...,ex) | A=B | VxA

Proof-terms t,bu = z | Az.t | tu | «

@ Classical logic obtained by introducing an inert constant « (call/cc) for
Peirce’s law (taken as an axiom)

@ Constructions T, A, V, 3 encoded using De Morgan laws (= full LK)
—— (z2A)er
rFz: A Fe:(A=B)=A) A
z:A-t:B rkt:A=B TFu:A
r'EXz.t: A= B NEtu: B
Fr'Et: A XEFV(T) [Ht:VxA Fr=t: L
M-t:vxA MN-t: A{x:=e} Fr-t: A

v

Note: V is treated uniformly: VxA(x) ~ [, A(x) (no function argument!)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 0000e0000

The target \-calculus ({T,=, A, 3}-fragment of LJ)

Types AB = T | pler,...,ex) | A=B | AAB | IxA
z | Az.t | tu | (t,u) | fst(t) | snd(t)

Proof-terms t,u

+ usual reduction rules for proof-terms

Typing rules

TFz:A " Frg. 7 Moeen®
z:A-t:B r’Ft:A=B TFu:A
Fr'EXz.t: A= B l-tu:B

FrEt: A r't: B r'Et: AAB r'Et:AAB
M= (t,uy: ANB I fst(t) : A It snd(t) : B
FeEt: A{x:=e} r-t:(3xA) =8B

x¢FV(B)
M-t¢:3IxA r-t:vx(A= B)

v

Note: 3 treated uniformly: 3IxA(x) =~ U, A(x) (no witness!)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 00000e000

Remark: Uniform vs non-uniform quantifiers (1/2)

@ In the Curry-Howard correspondence (and in realizability), there are
two different ways to interpret quantifiers:

Quantifier Uniform Non-uniform
(ML/Haskell style) (Type Theory style)
) A) ITA)
Vi A(X) xeD xeD
(intersection type) (type of dependent functions)
A A
o | U AW ST A()
xeD xeD
(union type) (type of dependent pairs)

e Remark: Tarski/Kripke/Heyting/Cohen models do not distinguish
the two interpretations: difference only appears in realizability

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 000000800

Remark: Uniform vs non-uniform quantifiers (2/2)

@ 1st-, 2nd- and higher-order logic support both interpretations
(But uniform interpretation is more concise & natural)

@ The same holds for impredicative set theories: ZF, IZF¢, 1ZFg

o Arithmetic (PA/HA) only supports the non-uniform interpretation
(due to the induction principle)

@ But in all cases, the non-uniform interpretation can be encoded from
the uniform interpretation, using a relativization:

(non-uniform) Vx A(X) ‘= (uniform) Vx (X eD = A(X))
—— ——

type of functions
(non-uniform) X A(X) ‘= (uniform) dx (X e DA A(X))
~—_————

type of pairs

@ This is why we shall prefer the uniform interpretation (in what follows)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation

000000 0000000 000000080

The Lafont-Reus-Streicher logical translation

o The logical translation A s ALRS

(p(er, ..., ea)) = pler,...,ex) I+t =T
(A= B)* = A ABt (Vx A)t = IxA*
ALRS = “RAL

corresponds to a program transformation on untyped proof terms,
called a continuation-passing style (CPS) translation:

Z)RS = As.zs
@) e = s (@5 = Az,5).2 (ke,s)
(.) = Maguo where ks = Xz,.).zs
(tU)LRS = As. tLRS <ULRS,S> s o= =) ©

Note: A(z,s).t defined as Az .(Azs.t)(fst(zp)) (snd(z0))

Theorem (Soundness)

If Fr=t: A (in the source A-calculus)
then [HAS [TS o s (in the target A-calculus)

Kleene realizability Godel-Gentzen negative translation Lafont-Reus-Streicher negative translation
000000 0000000 00000000e

Towards the Krivine abstract machine

@ From the computational behavior of translated proof terms tR°...

Az)RS @ (u,s) = tHRS{z:=u} @s
(tu)tRS @ s - ttRS @ (ulRs s)
()RS @ (u,s) = u @ (ks,s)

ks @ (u,s’) > u@s

. we deduce evaluation rules for classical proof terms:

Krivine Abstract Machine (KAM)

Grab Az.txu-m = t{z:=u}l*T
Push tu x T — t*xu-m
Save CTHU-T = uxky-m
Restore ke % u-m > u* T

@ Reformulating Kleene realizability through the LRS translation (and
its CPS), we get Krivine classical realizability (cf next talk)

	Kleene realizability
	Gödel-Gentzen negative translation
	Lafont-Reus-Streicher negative translation

